Essential Question How can you analyze a function from

its graph?

1

ACTIVITY: Analyzing Graphs

Work with a partner. Copy and complete the table for the given situation. Then make a graph of the data. Write an equation for the function. Describe the characteristics of the graph.

a. Find the area of a square with side length *s*.

Side, s	1	2	3	4
Area, A				

Side, s

c. You start with \$20 in a savings account. Find the amount left in the account when you withdraw \$2 each day *d*.

Day, d	1	2	3	4
Amount, A				

b. Find the amount earned for working *h* hours at \$3 per hour.

Hour, h	1	2	3	4
Amount, A				

Hour, *h*

d. You start with \$10 in a savings account. Find the amount in the account when you deposit \$2 each day *d*.

Day, <i>d</i>	1	2	3	4
Amount, A				

ACTIVITY: Conducting an Experiment

Work with a partner.

Collect Materials:

- A board at least 8 feet long
- Five books of the same thickness
- Toy car
- Stopwatch

Perform the Experiment:

- Place one book underneath one end of the board.
- Put the car at the top of the ramp. Measure the time (in seconds) it takes the car to roll down the ramp.
- Record your result in a table.
- Repeat the experiment with two, three, and four books.

Analyze the Results:

- Make a graph of your data.
- Does the graph have the characteristics of any of the graphs in Activity 1? Explain.

Use Your Results to Predict:

• Use your graph to predict how long it will take the car to roll down the ramp when five books are placed under the board.

Test Your Prediction:

• Repeat the experiment with five books. How close was your prediction?

-What Is Your Answer?

3. IN YOUR OWN WORDS How can you analyze a function from its graph? Give a real-life example of how a graph can help you make a decision.

Use what you learned about analyzing graphs to complete Exercises 3 and 4 on page 396.

A function whose graph is a straight line is a **linear function**.

Does the graph represent a linear function? Explain.

EXAMPLE

1

2

Key Vocabulary ()) linear function, *p. 394*

Identifying Linear Functions

The graph is not a straight line. So, the graph does *not* represent a linear function.

Identifying a Linear Function

The graph is a straight line. So, the graph does represent a linear function.

EXAMPLE

Input, Output, x y 0 0 1 1 4 2 9 3

Does the input-output table represent a linear function? Explain.

The ordered pairs in the table are (0, 0), (1, 1), (4, 2), and (9, 3). Plot the ordered pairs and draw a graph through the points.

The graph is not a straight line. So, the function is *not* linear.

📄 On Your Own

Does the graph or table represent a linear function? Explain.

8

9

4.

1.	у,		X									
	7										1	
	6											
	5									-	-	
	4						Y					
	3							\mathbf{N}	_			
	2											
	1											
	1											
	0	0	1 2	2 3	3 4	ł	5	56	;	7	x	
3.		In	out	t, x	C			0		3		6
		Οι	ıtp	ut	, у			1		4		7
	_											

Input, <i>x</i>	0	1	2	3
Output, y	1	2	5	10

EXAMPLE 3 der

Identifying a Linear Function

Is the function relating the diagram number x to the number of dots y linear?

Make an input-output table. Then graph the ordered pairs and draw the graph.

Diagram, <i>x</i>	Dots, y	(x, y)		
1	1	(1, 1)		
2	3	(2, 3)		
3	6	(3, 6)		
4	10	(4, 10)		

The graph is not a straight line. So, the function is *not* linear.

EXAMPLE

Д

Comparing Linear Functions

Your sister earns \$10 per hour. Your brother earns \$7 per hour.

The functions m = 10h and m = 7hshow the relationship between the numbers of hours h they work and the money m they earn. Which graph is steeper? Explain.

The graph of m = 10h is steeper. The reason it is steeper is that your sister's hourly rate is greater than your brother's hourly rate.

On Your Own

5. Make an input-output table for the pattern. Is the function relating the diagram number *x* to the number of dots *y* linear? Explain.

6. The functions d = 65t and d = 55t show the relationship between the distances d (in miles) traveled and the times t (in hours) for two cars. Graph the functions. Which graph is steeper? Explain.

9.5 Exercises

Vocabulary and Concept Check

- 1. VOCABULARY Why are some functions called *linear functions*?
- **2. WRITING** How can you decide whether or not an input-output table represents a linear function?

Practice and Problem Solving

Copy and complete the table. Then make a graph of the data. Write an equation for the function.

- **3.** Find the diameter of a circle with radius *r*.
- **4.** Find the cost of renting roller blades for *h* hours at \$6 per hour.

Radius, <i>r</i>	1	2	3	4
Diameter, d				

Hours, h	1	2	3	4
Cost, c				

Does the graph represent a linear function? Explain.

Does the input-output table represent a linear function? Explain.

2 11.	Input, <i>x</i>	1	2	3	4	12.	Input, <i>x</i>	0	2	4	6
	Output, y	1	3	5	7		Output, y	10	9	8	7
13.	Input, <i>x</i>	1	4	7	10	14.	Input, x	3	4	5	6
	Output, y	5	2	2	5		Output, y	5	8	9	8

Graph each linear function. Which graph is steeper? Explain.

16. $y = \frac{4}{5}x$ and $y = \frac{3}{5}x$ 4 **15.** y = 5x and $y = \frac{1}{5}x$ **17.** y = x and y = 2x + 1

Make an input-output table for the pattern. Is the function relating the figure number *x* to the area *y* linear? Explain.

a. Write a function that represents your distance *d* after *t* seconds.

are shown.

- **b.** Write a function that represents your friend's distance d after t seconds.
- **c.** Graph your distance and your friend's distance in the same coordinate plane.
- **d.** What does the intersection of the two graphs represent?
- **21. AIRPORT USE** The graph shows the numbers of flights that arrive at and depart from two regional airports. Which airport has more flights in a day? How many more? Explain.
- 22. Reasoning Use the graph.
 - **a.** Copy and complete the table. Then find the differences.

b. Graph other lines and find the "differences." Describe a property suggested by your results.

Fair Game Review What you learned in previous grades & lessons Tell which number is greater. (Section 4.3) **25.** $\frac{4}{5}$, 0.802 **26.** $\frac{33}{50}$, $66\frac{2}{3}\%$ **23.** 40%, $\frac{11}{25}$ **24.** 0.27, 2.8%

27. MULTIPLE CHOICE For which inequality is x = 7 a solution? (Section 8.1)

(A) x < 7**(B)** $x + 4 \ge 12$ (**C**) $21 \le 3x$ **(D)** 4x - 5 > 23

